Weakly asymmetric bridges and the KPZ equation

نویسنده

  • Cyril Labbé
چکیده

We consider a discrete bridge from (0, 0) to (2N, 0) evolving according to the corner growth dynamics, where the jump rates are subject to an upward asymmetry of order N with α > 0. We provide a classification of the static and dynamic behaviour of this model according to the value of the parameter α. Our main results concern the hydrodynamic limit and the fluctuations of the bridge. For α < 1, the hydrodynamic limit is given by the entropy solution of the inviscid Burgers equation with Dirichlet boundary conditions. For α ≤ 1/3, we show that the fluctuations around this hydrodynamic limit are given by the KPZ equation on the line and restricted to the time interval [0, T ): the final time T is infinite when α < 1/3, while in the regime α = 1/3 it equals the finite time needed by the hydrodynamic limit to reach its stationary state.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Introduction to Kpz

1. A physical introduction 2 1.1. KPZ/Stochastic Burgers/Scaling exponent 2 1.2. Physical derivation 3 1.3. Scaling 3 1.4. Formal invariance of Brownian motion 4 1.5. Dynamic scaling exponent 6 1.6. Renormalization of the nonlinear term 6 1.7. Cutoff KPZ models 7 1.8. Hopf-Cole solutions 8 1.9. Directed polymers in a random environment 11 1.10. Fluctuation breakthroughs of 1999 12 1.11. The Air...

متن کامل

Weakly asymmetric exclusion and KPZ

We review recent results on the anomalous fluctuation theory of stochastic Burgers, KPZ and the continuum directed polymer in one space dimension, obtained through the weakly asymmetric limit of the simple exclusion process. Mathematics Subject Classification (2000). Primary 82C22; Secondary 60H15.

متن کامل

A Numerical Study of KPZ Equation Based on Changing its Parameters

In this article we investigate the behaviour of the scaling exponentsof KPZ equation through changing three parameters of the equation. Inother words we would like to know how the growth exponent β and theroughness exponent α will change if the surface tension ν , the averagevelocity λ and the noise strength γchange. Using the discrete form of theequation , first we come to the results α = 0.5 ...

متن کامل

Nonlinear Fluctuations of Interacting Particle Systems

We introduce what we call the second-order Boltzmann-Gibbs principle, which allows to replace local functionals of a conservative, onedimensional stochastic process by a possibly nonlinear function of the conserved quantity. This replacement opens the way to obtain nonlinear stochastic evolutions as the limit of the fluctuations of the conserved quantity around stationary states. As an applicat...

متن کامل

Scaling Exponent for the Hopf-cole Solution of Kpz/stochastic Burgers

We consider the stochastic heat equation ∂tZ = ∂ 2 xZ − ZẆ on the real line, where Ẇ is space-time white noise. h(t, x) = − logZ(t, x) is interpreted as a solution of the KPZ equation, and u(t, x) = ∂xh(t, x) as a solution of the stochastic Burgers equation. We take Z(0, x) = exp{B(x)} where B(x) is a two-sided Brownian motion, corresponding to the stationary solution of the stochastic Burgers ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016